

Pixel 2008, 26 Sep 2008, Fermilab Physik Instit

Physik Institut der Universitat Zurich-Irchel

Outline

- PIXELAV = very detailed simulation of charge collection in silicon detectors
 - developed to explain CMS test-beam data after irradiation

"Observation, modeling, and temperature dependence of doubly peak edelectric fields in irradiated silicon pixel sensors." M. Swartz et al. Oct 2005. Published in Nucl.Instrum.Meth.A565:212-220,2006.

- New technique for position reconstruction in pixel detectors
 - based on shapes predicted by PIXELAV
 - for best performance, requires local incidence angles of the track (optimally used in the final track fit)
 - documented in CMS (public) note:

"A new technique for the reconstruction, validation, and simulation of hits in the CMS pixel detector."

M. Swartz, D. Fehling, G. Giurgiu, P. Maksimovic, V. Chiochia (CERN). CERN-CMS-NOTE-2007-033, Jul 2007.

- Other uses:

- reject wrongly assigned hits (improve track seeding)
- split overlapping clusters (also reject some delta rays)
- realistic simulation of irradiation

CMS Tracker System

- CMS tracker is all silicon:
 - strips

CMS Pixel Detector

CMS Pixel Detector

- Pixel size: 100 μm x 150 μm
- Cluster shape depends on "local incidence angles" lpha and eta
- Length of each projection depends on $\cot \alpha$ and $\cot \beta$

- Before irradiation:
 - charge sharing is uniform along z and \$\phi\$
- After irradiation:
 - defects in the silicon lattice trap charge from one side of clusters
 - clusters become smaller, asymmetrically

longer drift → more charge trapped → smaller signal

PIXELAV Realistic Simulation

- PIXELAV = transport simulation of individual electrons
 - E-field modeling w/ TCAD 9.0
 - data well-described by tunable double-junction model from $F = (0.5-6)x10^{14} n_{eq}/cm^2$
 - charge projections of clusters in test-beam data (of both unirradiated and irradiated detectors) are described extremely well

Example of a Pixel Clusters

- Example *barrel* cluster (from a high η track)
 - green pixels are below threshold
 - note that true hit position is in a pixel which is not part of the cluster

- Making templates:

- Use PIXELAV gives projections of average cluster shapes for all lpha and eta
- Only X and Y projections are encoded:
 - they are (roughly) independent
 - require less space

Template Object

- A template object is a map of expected charge depositions for given local incidence angles α and β
- Charge deposited in a pixel is divided in 9 bins:

Template Reconstruction Algorithm

- Cluster shape provides information for optimal hit reconstruction
- After irradiation, cluster shape still contains enough position information
- Given the track incident angles
 α and β, find corresponding
 expected cluster shape (template)
- Do this separately for X and Y projection
- Determine the hit position that minimizes χ^2 between template and cluster

Expected Template Performance

- PIXELAV comparison between standard (red) and template (blue) algos
- Before irradiation: expect good resolution improvements

(here, CMSSW = standard CMS reconstruction)

Expected Performance After Irradiation

- After irradiation: standard algorithm is much more affected than templates
- ==> template algorithm will perform much better and will have much smaller biases

(here, CMSSW = standard CMS reconstruction)

Removing Low Charge Clusters

- Low charge clusters are produced by upstream delta-rays or edge clusters
- Delta rays (magenta) can be removed using the χ^2 probability between the observed and expected cluster shapes
- Cluster charge distributions produced by 10 GeV muons in different η bins:
 - black $\rightarrow \mu^+$, red $\rightarrow \mu^-$, magenta \rightarrow electrons (delta rays)

Removing Low Charge Clusters (2)

- A hit probability cut of 10⁻³ removes most of delta-rays and edge clusters
- Efficient: only ~1-2 % of true hits are removed

- Another approach: split clusters.
 - Developed for tracking in dense jets
 - Accidental benefit: effective in removing delta rays as well!

Speed-up Tracking with Better Track Seeding

- In a dense hadronic environment, time of pattern recognition (tracking) is driven by the combinatoric of multiplets of hits
- At CMS, the default algorithm starts from pixel `seed' and goes outward
- Pixel seed:
 - 2 or 3 pixel hits
- Template fit can help avoid wrong seeds:
 - run the template fit, cut on probability
 - will remove clusters that are inconsistent with the track hypothesis

- Under study: remove dubious hits at the end, in `outlier rejection'

Simulating Irradiation Effects

- PIXELAV reproduces cluster shapes after irradiation extremely well
 - alas, too slow to run directly in CMS simulation!
- Default CMS charge deposition/collection is fast, but too idealized
- Compromise: use the default charge deposition/collection, but reweight using ratio of PIXELAV and average default simulation
 - default CMS simulation fluctuates the charge collection properly
 - radiation damage is taken into account
 - it's fast
- Main technical challenge was to manufacture 2D shapes from two 1D templates (along X and Y)

Tracking Resolution with Template Reco.

- Compare χ^2 and Gaussian width of track parameters' pulls

- Improved χ^2 , impact parameter (d₀), Z₀, cot(θ) and azimuth angle (ϕ) resolution especially at high- η ranges

Tracking Resolution with Template Reco.(2)

- Template algorithm *significantly reduces tails* in the pulls:

 Expect to see significant improvement in b-tagging, especially in mistag rate which is driven by tails!

B-Tagging Using Template Hits

- B-tagging algo = based on the significance of impact parameter (IP)
- Run on generic QCD sample

- For b-tag efficiency of 50% the *mistag rate is reduced by a factor of 2*
- For a mistag rate of 1% the b-tag efficiency is better by 10%

Conclusions

- A new method (template algorithm) that uses all available charge information has been developed
- Before radiation damage: improved hit resolution (also better errors)
- After radiation damage: the only option available!
- Improved b-tagging:
 - Reduced b-tag mistag rate by factor of 2
- By-product of the template method is the pixel hit probability
 - When used to clean track `seeds' → tracking time reduced x2!
- Templates can be used to simulate irradiated sensors
 - By re-weighting simulated clusters